Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Dielectric Constant on the Performance of a Gate All Around InAs Nanowire Transistor

Identifieur interne : 001D56 ( Main/Repository ); précédent : 001D55; suivant : 001D57

Effects of Dielectric Constant on the Performance of a Gate All Around InAs Nanowire Transistor

Auteurs : RBID : Pascal:12-0087525

Descripteurs français

English descriptors

Abstract

The effects of gate dielectric constant on the performance of a gate all around indium arsenide (InAs) nanowire transistor are studied using a 3-D quantum simulation. The replacement of SiO2 by a high-κ dielectric improves the OFF-state current, the ON-state current, the ON/OFF current ratio, the inverse subthreshold slope, the channel transconductance, and the switching delay and degrades the power-delay product. The OFF-state current is mainly tunneling current and the high-κ gate dielectrics improve the device OFF-state performance by increasing the tunnel barrier length. On the other hand, the ON-state current is mainly thermal current and the high-κ dielectrics improve the device ON-state performance by reducing the barrier height. The gate capacitance is increased with high-κ dielectrics. However, the improved ON-state current with high-κ dielectrics makes the switching delay shorter and increases the power (VDDION) dissipation and power-delay product. Due to very small effective mass of electron in InAs, the quantum effect on threshold voltage is strong and the device with smaller cross section shows better ON-OFF and switching performance at the same gate overdrive voltage.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0087525

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of Dielectric Constant on the Performance of a Gate All Around InAs Nanowire Transistor</title>
<author>
<name sortKey="Alam, Khairul" uniqKey="Alam K">Khairul Alam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Electronic Engineering, East West University</s1>
<s2>Dhaka 1212</s2>
<s3>BGD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Bangladesh</country>
<wicri:noRegion>Dhaka 1212</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abu Abdullah, Md" uniqKey="Abu Abdullah M">Md. Abu Abdullah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Electronic Engineering, East West University</s1>
<s2>Dhaka 1212</s2>
<s3>BGD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Bangladesh</country>
<wicri:noRegion>Dhaka 1212</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0087525</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0087525 INIST</idno>
<idno type="RBID">Pascal:12-0087525</idno>
<idno type="wicri:Area/Main/Corpus">002206</idno>
<idno type="wicri:Area/Main/Repository">001D56</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1536-125X</idno>
<title level="j" type="abbreviated">IEEE trans. nanotechnol. </title>
<title level="j" type="main">IEEE transactions on nanotechnology </title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barrier height</term>
<term>Capacitance</term>
<term>Delay time</term>
<term>Energy dissipation</term>
<term>Gate voltage</term>
<term>Green function</term>
<term>High k dielectric</term>
<term>Indium arsenides</term>
<term>Nanoelectronics</term>
<term>Non equilibrium conditions</term>
<term>Performance evaluation</term>
<term>Quantum effect</term>
<term>Silicon oxides</term>
<term>Switching</term>
<term>Transconductance</term>
<term>Tunnel effect</term>
<term>Voltage threshold</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaluation performance</term>
<term>Nanoélectronique</term>
<term>Transconductance</term>
<term>Commutation</term>
<term>Temps retard</term>
<term>Dissipation énergie</term>
<term>Effet tunnel</term>
<term>Hauteur barrière</term>
<term>Capacité électrique</term>
<term>Effet quantique</term>
<term>Seuil tension</term>
<term>Tension de grille</term>
<term>Régime hors équilibre</term>
<term>Fonction Green</term>
<term>Arséniure d'indium</term>
<term>Oxyde de silicium</term>
<term>Diélectrique permittivité élevée</term>
<term>SiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effects of gate dielectric constant on the performance of a gate all around indium arsenide (InAs) nanowire transistor are studied using a 3-D quantum simulation. The replacement of SiO
<sub>2</sub>
by a high-κ dielectric improves the OFF-state current, the ON-state current, the ON/OFF current ratio, the inverse subthreshold slope, the channel transconductance, and the switching delay and degrades the power-delay product. The OFF-state current is mainly tunneling current and the high-κ gate dielectrics improve the device OFF-state performance by increasing the tunnel barrier length. On the other hand, the ON-state current is mainly thermal current and the high-κ dielectrics improve the device ON-state performance by reducing the barrier height. The gate capacitance is increased with high-κ dielectrics. However, the improved ON-state current with high-κ dielectrics makes the switching delay shorter and increases the power (V
<sub>DD</sub>
I
<sub>ON</sub>
) dissipation and power-delay product. Due to very small effective mass of electron in InAs, the quantum effect on threshold voltage is strong and the device with smaller cross section shows better ON-OFF and switching performance at the same gate overdrive voltage.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1536-125X</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. nanotechnol. </s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of Dielectric Constant on the Performance of a Gate All Around InAs Nanowire Transistor</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ALAM (Khairul)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ABU ABDULLAH (Md.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Electronic Engineering, East West University</s1>
<s2>Dhaka 1212</s2>
<s3>BGD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>82-87</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27310</s2>
<s5>354000508870670130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0087525</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on nanotechnology </s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effects of gate dielectric constant on the performance of a gate all around indium arsenide (InAs) nanowire transistor are studied using a 3-D quantum simulation. The replacement of SiO
<sub>2</sub>
by a high-κ dielectric improves the OFF-state current, the ON-state current, the ON/OFF current ratio, the inverse subthreshold slope, the channel transconductance, and the switching delay and degrades the power-delay product. The OFF-state current is mainly tunneling current and the high-κ gate dielectrics improve the device OFF-state performance by increasing the tunnel barrier length. On the other hand, the ON-state current is mainly thermal current and the high-κ dielectrics improve the device ON-state performance by reducing the barrier height. The gate capacitance is increased with high-κ dielectrics. However, the improved ON-state current with high-κ dielectrics makes the switching delay shorter and increases the power (V
<sub>DD</sub>
I
<sub>ON</sub>
) dissipation and power-delay product. Due to very small effective mass of electron in InAs, the quantum effect on threshold voltage is strong and the device with smaller cross section shows better ON-OFF and switching performance at the same gate overdrive voltage.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanoélectronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanoelectronics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanoelectrónica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transconductance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Transconductance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transconductancia</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Commutation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Switching</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Conmutación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Temps retard</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Delay time</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tiempo retardo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dissipation énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy dissipation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Disipación energía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Effet tunnel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tunnel effect</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Efecto túnel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Capacité électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Capacitance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Capacitancia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Effet quantique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quantum effect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Efecto cuántico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Seuil tension</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Voltage threshold</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Umbral tensión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Tension de grille</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gate voltage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Voltaje de rejilla</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Régime hors équilibre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Non equilibrium conditions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Régimen fuera equilibrio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Fonction Green</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Green function</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Función Green</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Diélectrique permittivité élevée</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>High k dielectric</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Dieléctrico alta constante dieléctrica</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé IV-VI</s0>
<s5>15</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>IV-VI compound</s0>
<s5>15</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto IV-VI</s0>
<s5>15</s5>
</fC07>
<fN21>
<s1>065</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001D56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0087525
   |texte=   Effects of Dielectric Constant on the Performance of a Gate All Around InAs Nanowire Transistor
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024